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the Fokker-Planck equation

G. BURDET - M. PERRIN

Centre de Physique Théorique
CNRS - Luminy-Case 907
F - 13288Marseille Cedex9

Abstract.Theintroductionofan extendedevolutionspaceallowsto givean intrinsic
formulationof theFokker-Planckequationandmakesclearitsstructuralinvariance
under the chronoprojecrivegeometry.Symmetryalgebras and solutions in time
dependentparabolic externalfieldsarededuced

INTRODUCTION

The theory of infinitesimal symmetriesof differential equationsoriginatesin
SophusLie’s works basedon the infinitesimal propertiesof continuousgroups

of transformations.As explainedby Elie Cartan, transformationsgroups are
automorphismsgroupsof particularstructures,at presentnamedCartanstructures,
at presentnamedCartanstructures,of which the betterknown are the affine,

projectiveandconformalgeometries.
But it is less known that the automorphismsgroup of a geometricstructure

can play the role of symmetry groupfor a differential systemif and only if the
concerned differential operators possessa reproducingproperty with respect

to the equivalencerelation inherent in the geometry, this definesthe so-called
structural invariance of the differential operators.Now we can ask why this

aspecthasnot beenmoredeveloped.An elementof answerto this questioncan

be found into the fact that very few geometriesexistandamongthem only the
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conformal one deals with physical systems,with the severe restriction that it

concernsmasslesssystemsonly.

Recently we constructed a new geometry for the Newtonian space-time,

synthesizing the conformal equivalencenotion of two Galilean structuresand

the projective equivalencenotion of two affine connections,and we haveshown

that it is perfectly convenientfor the descriptionof the Newtonian gravitation

[I]. It has been called the chronoprojective geometry since the subjacent

characteristichomogeneousspace is a generalizedMobius spacefibered over

the projectiveline which playsthe role of time axis.

However difficulties arisewhen we want to describemechanicalsystemswith

mass. Difficulties of the same kind also appearin group representationin the
framework of which they havebeensolved by introducingprojectiverepresenta-

tions or equivalently true representationsof the Bargmanncentral extension.

This last trick reveals also useful from the geometricalpoint of view. Indeed

over a one-dimensional supplementedspace-timea new formulation of the

chronoprojectivegeometry can be given which can he presentedas a reduction

of the conformal one [21, and which is proving to be very elegantand fruitful

for the description of classical and quantumsystems[31, 141. So we havegood

reasonsto think that any evolution equation can be put into an intrinsic purely

covariant form in this extendedgeometricframework. To support this thesis,

the caseof the Fokker-Planckequationis treatedin thepresentpaper.

Concerningthe supplementarydimensionwe have found no reasonto look

for giving it a physical meaning. Its introduction justifies itself from a formal

point of view for, as A. Einsteinsaid: <<time and spaceare modesby which we

think andnot conditionsin which we live>>.

l.A - THE GEOMETRICAL FRAMEWORK

Let ~ ~g) be a (n + 2)-dimensionalLorentzian manifold (i.e. a pseudo-
Riemannian manifold with signature n), which is a principal (IR, +)-bundle

1 ~ -~ ~+ over a (n + 1)-dimensional connected smooth manifold

Let ~ be the generatorof the additive group (IR, +), ~ is supposedto be
null i.e. ~(E,~) o (1) and covariantly constant with respectto the Levi-Cività

connectionV~associatedto (~+ ~ i.e. = o. Consequently:

i) ~(~)is a nowherevanishingclosedbasicone-form,so we canset~(~)=

where ~ is a closedone-form on ~ + ~.

ii) ~ is a Killing vector field i.e. L~g~= a, so, the push-forward twice

(1) In the <<relativistics case~ ~)= c~.
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contravarianttensory 1 is well defined on ~ + and satisfies ~y(~i)= o.

The triplet ~ 1’~~”~1i)can be called a generalized (2) Galilean manifold
since a temporalaxis is defined by the quotient J’~1/Ker ~1iwhich is supposed

to exist.

Let T: ‘~+ —~ ~ + ~/Ker tji denote the canonical submersion map. Then

each slice T~(t), t E ~ 1/Ker i,Ii, is endowedwith a contravariant<<spatial>>

metric induced by ‘y and is diffeomorphic to a n-dimensional Riemannian

manifold (V~g).

As a principal (IR, +)-bundle over ~ + J~ + ~ is trivializable,i.e. it possesses
a global cross section ~ : ~ + -~-~ + ~ and correspondinglyit is isomorphic
to the trivial principal bundle i : ~ 1,1 -~ ~‘~+ x (IR, +). Let a be the canonical
flat connectionin ~ 1~(IR, +). If ~has beenchosensuchthat (1 * ~)Ja = 1,
then:

i) U(f) =~‘(i * a) is a vector field on ~n+ and 7r~U(I)is a vector field

~ + such that (ir,1, U(f)) J i,ti = ~ 1 i” a = I. So that = 7r~U(1) plays
the role of a Galilean observer.

ii) U(j)1~* a= r 1 (i * a, i” a) = 2 l’~ is a function defined on the basis

since~ is a Killing vectorfield and = o, so we canset V = lr*(V).

Now, some commentsabout connectionsare in order. The connectionform

of the Levi-Civitâ connectionin (V~~~ takes its valuesinto o (n + 1, 1)
the Lie algebra of the structural group of the bundle 0(V~÷~) of pseudo-
-orthogonalframes over ~ + ~. But due to the presenceof the null vectorfield

one is led to considerthe stabilizer H into 0(n + 1, 1) of a null directionof
lR’~+ ~ In fact H is isomorphicto thehomogeneousGalileigroupH — lR’~x 0(n).
This then leads to restrict the bundle 0(V~~~ to the bundle H(i~~~~) of

Galilean frames over l’~ ~. Then the Levi-Civitá connectionin O(V~~~)
is reducible to a connection4) in H(J’~+~ and we shall always denoteby V1-
the correspondingcovariant derivative.

Now let us considerthe pull-back (H(V0~~),~M) of (H(J’~~~ 4)) over

induced by the above consideredcross section E of ~ ~ into V,~~

SinceH(V,~÷i~ is the bundle of Galilean framesover ~+ ~, the inducedconnec-
tion ‘4) is a Newtonian connectiondue to the structureequationsof 4) [3].
As such ‘y and ,li are paralleli.e. suchthatV y = o and V i,li = o whereV denotes

the covariant derivative correspondingto ~ *4) and the observerU(s) is geodesic

i.e. V~U=o.

(2) The word generalizedis usedhereto remind that oneconsidersa n-dimensionalconfigura-
tion spacerather than theusual 3-dimensionalspaceof the Newtonianspace-time.But in the
following the word generalizedwill be omitted.
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To give a more precise idea of the ahove construction, let us introduce the

adaptedcoordinatesystem

p = ~ n 2
I 1,n 2] - . - L L] 1,n

inducedby a local chart~x~ ~ of 1~+ ~

By setting

(1.1) ~ ö~

(1.2) = ~ (lX°

from the abovegivendefinitions we obtain:

(1.3) ~ ~=y~- 2I~~

(1.4) 2 = 2 =

(1.5) ~~2~2=2J., g~~7~2—0

with

(1.6) ~ U~= I. ~U~= 0, ~ = o~—U~.

Eachcomponent~ or ~ dependson x°only and~ = ~+ 2

The Christoffel’s symbols F of the connection4) and the ones F of ~ ~1 are

givenby:

U

(1.7) fl = F~11-

(1.8) ~n- 2 = —

with
I U

(1.9) = — d~Y~ç + ~‘

and

(1.10) fl=F~.G~

We thus see that (1.10)expressesthe fact that theconnection V~~ onto

I as a well defined N ewtonianconnectionV.

ihe non—vanishingcomponentsof the Riemaun—Christoffeltensor0! ‘1’ and

~ areexpressedby

(1.11) =
“V)

(1.12) j~n;2 27~fl; 2

R satisfVine:
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(1.13) Rt y~=Rv ~rd

which reflects the fact that the subjacent connection ~ *4) on ~ + is Newtonian.

l.B - AN INTRINSIC FORMULATION OF THE FOKKER-PLANCK EQUATION

The time dependent probability distribution P of a diffusion process defined

on a n-dimensionalRiemannianmanifold (V
0g), the state space or configuration

space,is governedby theFokker-Planckequation

(1.14) ~i~P= — div bP— — gradP
g 2

whereb denotesthe forward drift, a vectorfield on J’~.
Hence tile Fokker-Planck equationis anevolutionequationfor thedistribution

function P on (V0 x time), the evolutionspace.
It is well known that the kinematicalanddynamicalconceptsof classicaland

quantum mechanicsare intrinsically formulated over a Galilean manifold, or
still better, on the so-called extendedevolution space (V~~~Th~). Let us
thenconsiderthe following differential system:

(1.15) div~(~_1((~__V1) P))=o

(1.16)

where

i) ~ denotes the drift considered here as a closed one-form (d~= o) over

+ 11 which satisfies

(1.17) ~Jh= I

i.e. ~ is semi-basic for the fibration ir : V0~1,1 —~ ~+ ~, and since ~ is a Killing

vector field

(1.18)

so that the push-forwardvector field 1~(b)is well-defined over ~+ 1: it is the

physicaldrift b whichstandsin (1.14)

(1.19) b = ~ ‘(b)

ii) P is a real function over V,7 + ~ which is basicfrom (1.16). We canthen
set

(1.20) j°=ir~P
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whereP denotesa real function over ~ + ~

Note that (1.15) can be written as:

(1.21) V(~(~)) —A1P

whereA~denotesthe Laplace-Beltrarnioperatorof (V,.4 ~
Now, let us explicitly work out the local expressionof this equationin the

adaptedcoordinatesystem introduced in sec. l.A. One gets:

g°~V0~Pb~)+ g° 2{ V0~F~0~2)+ V0 ~2(Pb0)~+~ 2, 2 ~2~P~~2) =

(1.22)

= — {g~><V0a~P+g0
2(Va

2F+v2aP)+g~~
2~~2~

2o2P}

In view of (1.3) - (1.5), (1.7), (1.8) and(1.20),oneobtains

(1.23) 1

= — {y°~(V0a~P—r~
2a

2r)+2u°ao2P+2Va2(a2P)}.

Now, by taking into accountfor

thepropertiesof b, namelyclosureandsemi-basicitywhich imply:

(1.24) b0~2—1

(1.25)

— the basicityof P which implies

(1.26) ~n+21~0

— the explicit expression (1.8) of ~‘n+2

oneis left with

y°~V0(P~)+(V0U°)P+U°V0P=—

or

(1.27) (V3U°)P+ LI
0V~P= ~

which canbe written as
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(1.28) ~U0)P+VUP=_div
77((b# — _V)P)

where div denotes the divergence operator induced by the Newtonian connection

V and b# is the one-form locally defined by:

(1.29) b#=~dx0.

It appearsthat (1.28) is the covariantexpressionon a curvedNewtonianspace-
-time of the Fokker-Planckequation. Indeed, it can be verified that the usual

form of the Fokker-Planckequation (1.13) is recoveredby expressing(1.28)
in the specialadaptedcoordinatesystemwhere:

(1.30) = (un ~ ~ = (0, 1), U = (~).

Note that the only quantity possessingaphysicalmeaning,thatis theNewtonian

drift viewedas a vectorfield, is recoveredas

(1.31) b=7(b~)

So, by introducing an extendedevolution space,it has beenpossibleto givean

intrinsic formulation of the Fokker-Planck equation through the differential

system (1.15 - 16), and we will call Fokker-Planckoperator the differential
operatorF definedby

(1.32) F(. ) = div1(~_i((~— -~_ Vi.) )).

Note also that the probability density function P can be replacedby the

density:

(1.33) P
t=HIP

where r’ denotesthe Galileandensityof (V~+ ~ “~ il’).

Then, since

(1.34) L~z= (V
0U°)r’

the covariantexpression(1.28) of the Fokker-Planckequationcanbe written as:

(1.35) L~P~=— div b~—— V P~.
2

To end this section it is important to stressupon the fact that the metric ~

carries in itself an external field V which appearsin the local expressions(1.3)
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ciiid (1.~) exp/ic’iteli. But tins external field doeshot appearexpliciteli’ au vniore

iii i/ic co variant hut local expressionsof the Lokker—l’lanckequation given hr
(1.2$) auid (1.34). On a particular examplede,scribed in Sect. (11.B) it will he

s/loss/i that it is throng/i the drift teini that the external field ililist reveal its

existence.

1I.A - THE CHRONOPROJECTIVE GEOMETRY

It is not the placehere to give a completedescriptionof whathasbeencal led

the (extended) chronoprojective geometry and which has been describedin

121. We \sant only to briefly recall tIle properties we need for the following

by keeping tile point of viess we chose to adopt in 12], that is the description

of the chronoproiective geometry oh (I~ + 1,1 : ~: ~) as a <<reduction~ of tile

conformal geometry of (I~+ 1.1: gi governed by tile presenceof the privileged

vector field ~.

liv conformal geometry of a Lovenzian manifold we mean the conformal

(artan structure (CL (I ~ + ~ ~ I where CL (I + 1.1 denotes tile reduction

of tile second-orderframesbundleP
2( ~ + 1,1 over ~ + 1.1 to the principal fibre

bundle with structure group the conformal Euchidian group of V,, + 1] (i.e. the

semi—direct product of a dilation by tile Euclidian group of J~~<~) endowed

with the canonical Cartan connection for CE( ~ + ~, ~)with values into the Lie
algebrao(ui + 2,2).

Tile conformal Cartan structure (CE( I ~+ ~ ~ ) allows to deal with au

the families of contormally equivalent Lorentzian metrics over I + 1,1

Now let us introduce the conformal Lorentzian structures (CO(1 ‘,~+ ~ ~

where CO(I + ~ denotes the reduction of the first order frames bundie
P1~ + 1.1 over ~ + 11 iO tIle principal fibre bundle with structllre group the

conformal orthogonal group of lfl + 1. I that is CO (n + I .1) and ~ is theatfine

cc(n + 1 ,1 )-vaiuedconnectioni.e.~ (0, 1~) where0 = 0~(a E 11. ii + 2[,

anliolonomic indices) denotesthe restriction of the lR0+ 2-valuedcanonicallorni

of P1(J~+ ~ to CO (V + ~) and ‘onf a co(n + 1 .1 )-valued reduction of a

torsionlesslinear connection.

Let us consideran embeddingi : C’O(V,< ~ ~ V,
7~~) and define =

= ~ Then it is said that the conformal Lorentzian structure (COt. V, +

~conf~ belongs or is subordinateto the conformal (artan structure (CE( ~ +

(a .).cant
Then we can comparethe connectionone—forms of two conformal Lorentzian

structures (CO( l~+ ~ ~conf~ and (CO( l~~ ~ ~ belonging to the same

conformal Cartan structure. The expressioll has been given in 121 and can he

locally expressedon tile corresponding(‘iiristoffel’s symbols in a normal local
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coordinatesystem{x~,p E [1, n + 2]} of V,
74.11as:

(11.1) F°’~l”=~7’i1 +~‘~ —g g>”O
~P ~1 P P /4 p

where {n~}are the componentsof anarbitraryone-form~ on ~
To treat the problem of one family of conformally equivalent metrics on

V in the sense

(11.2) g’’—g if g’=pg

where p is a positive suitably differentiable function on V, one needs to

consideronly one conformal Lorentzianstructure.To comparethe Levi-Civitã
connectionscorrespondingto two conformallyrelatedmetricswe haveto consider
the embeddingsof the two correspondingorthogonalframes bundle 0(V) into

the Lorentzian conformal structure.Then Rel. (11.1) is recoveredbut now the

one-form~ is preciselygiven by

(11.3) = d (Logp’
12).

As recalledabove,the chronoprojectivegeometrycanbe viewedas a <<reduc-

tion>> of the conformalone,taking into accountbesidestheconformalequivalence
of the metrics, the conformal equivalenceof the privileged null vector fields

definedas

(11.4) ~ if ~‘ = a

wherea is a priori any function on ~ + ~
But from the paralleltransportof ~and~ onededucesthat

— a is a constantfunctionon ~+ ~

— p is a constantfunction on the fibres ~n +~ —~~ + ~,andmore, is the pull-
-back of a functionof the (<time axis>> of ~ + only.

The secondorder Cartanstructure(L°(V),Wthr) which is usedto describethe

chronoprojectivegeometryis a reductionof CE(V~~
11)to a bundle L°(V,~~11)

where

(11.5) L°= 1R~(x(0(n)® R aS2)= H~(x(lRaS2) C CE(n + 1, 1)

where I-1~denotesthe homogeneousGalilei group defined in Sect. l.A and S2

denotesthe two-dimensionalsolvable group, endowedwith the corresponding

reduction of to what we call the chronoprojectiveconnection which
takes its values into the chronoprojective Lie algebra:

(11.6) chr~= w,7 0 (0(n) a gl(2, IR))

where w~denotes the Lie algebraof the Weyl group (alsocalled the Heisenberg
algebra)of dimension2n + 1, which is a subalgebraof o(n + 2,2).
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At the first-order frames level, the so-called extended conformal Galilean

structures (L’(V), ~) have been introduced from the conformal Lorentzian

ones (CO(I~+ii~’ ~ by reductionof thebundleCO(V
0+ii~ to thesubbundle

L
1(J~..~) whosestructuregroupL’ is the stabilizerinto CO(n + 1, 1) of a null

direction of 1R~~ In fact L1 consists into the semi-direct product of the

homogeneousGalilei groupby two dilationsdenoted1R~andIR,:

(11.7) L’~ H
0 (x(JR n 1R~).

The extendedconformal Galilean connection~ can be written as ~O,4)} where

o denoteshere the reduction to L’(V0~ii~ of the canonicalform of P’(V,7~11)

and 4) the /
1-valuedreduction of a linear connection.The one-forms ~ and ~‘

of two extendedconformal Galileanconnectionsbelongingto thesamechrono-

projective structure (L°(V,
5+ ~). ~ can be compared and locally the

correspondingChristoffel’s symbols are always related accordingto (11.1 ) hut

here t~is proportional to g(~).

If we restrict ourselvesto a Galileanstructure(11(V). ~p)reductionof a Lorent-

zian one, the 1evi-Civitb connectiongives rise to a Newtonianconnection4) and

p = (0, 4)). If we compare two Galilean structures(11(V), Ip) and (11(V),~‘)

belonging to the same conformal Galilean structure (L
1(V), ~) one gets always

Rd. (11.1 ) with the constraint (11.3): i~= d(Log pL’2), but remember that p

is thepull-back of a function of the <(time-axis>)of I~ + 1 only.

From Rel. (11.1)the following relationsexpressingthechronoprojectiveequiva-

lence on the covariant derivative of a one-form a and on the Laplace operator

overfunctionsare easilydeduced

(11.8) V~a= V~a+ ,i/2 p~(dp, a)

(11.9) ~f= p~~f+ ui/2 p2~ 1(dp, df).

II.B - THE STRUCTURAL IN VARIANCE OF THE
FOKKER-PLANCK EQUATION

Now we want to study the behaviour of the Fokker-Planck system with

respect to the above described geometric structure. This amounts to ask the

following question: if P is a solution of a Fokker-Plancksystem,is it possible

to constructP which will be a solution of thesystem deducedfrom theprevious

oneby chronoprojectiveequivalence.

Let us set

(11.10) = pfl/2~

(11.11) b’ = b — (n/4) dp/p.
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The left hand side of (1.21) can be calculated by using (11.8), which leads to

=

(11.12) = ~ (n + 2)/2V.-~l(~~) — (n/4)p— (n + 4)/2~—1(dP, dp) +

+ (n2/16)p”~2~2P~’(dp,dp)

and for theright side,by using(11.9)onegets

~ p(n+2)/2~fi....

(11.13) — (n/2)p’2~~(dp,dP) + (n2/8)p~~2~/2P~(dp, dp).

So the following identity is established

(11.14) div
1 (~‘ ‘((i’ — 1/2 ~l )P’) = p_(fl + 2)/2div1(~‘(~— 1/2 V/~,)P).

In what concerns (1.16), the chronoprojectively transformed quantities auto-

matically satisfy ~‘(P’) = 0 owing to ~(P)= 0 but the condition (1.17) on the

drift having to be always satisfied,that is ~‘ I b’ = 1 it implies to take a = I.

Therefore the identity (11.14) and the aboveconsiderationsshow that 1fF is a

solution ofa Fokker-Plancksystem,F’ is alsoa solution of thechronopro/ectively

equivalentonei.e. thedimensionof thespaceofFokker-Plancksystemsolutions

is a chronopro/ectiveinvariant. This is whatis meantwhenwe speakof structural

invarianceofFokker-Plancksystemsunder thechronoprojectivegeometry.

Now, let us showhow this invarianceproperty can be used to connectvarious

systems described by the Fokker-Planck formalism.

Let us considerthe chronoprojectivelyflat extendedconfigurationspace-time
(JRn+

2~

0 ~= a0~2)with

(11.15) g0—~1~d
1~dy+dy~dy

Let A be the local diffeomorphism of ~n+2 A: (x, t,s)-÷(y,y’~’,y”~2)

given by:

y= (x+fl)r~

(11.16) j’~1—y~~’=T(r)=fr(r)2dr, r=t—t
0

y’~~
2=s+1/2 (Lôgr)(x+~)2—(~.x)+1/27

where r is a solution of 1 = ec2r such that r(o) = I; r, a2, j3’, 7 being real func-
tions of the time coordinate t only, and the dot denoting the derivation with

respect to t.

Under the diffeomorphismA
1j~n+ 2 is endowedwith a new chronoprojectively

flat metric~~definedby
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(11.17)

andwhich canbe expressedas

(11.18) g~~=o/~dx1®dxk+ds~dt_2Vdt®dt

with

(11.19) V=— l/2{a2x2+ 2((a2~—~).x)+ a2~2+~2+ -i’}.
This potential V expresses the inhomogeneity of the ambient medium. To study

the (n + 2)-dimensional Fokker-Planck equation written for the metric

turns out to treat the following equationin the (ii + 1)-dimensional<<pllysical
spa cev

(11.20) ~ = - ~a~(bP) — — a ,~a
1p~

/Ell,nl Y 2 .)

wherethe coordinateyfl + 1 plays therole of the time.
If a solution P of this equationis known for a particular drift b, owing to the

chronoprojectiveinvariancewhich existsat thelevel of theextendedspace-time,

a solutionP’ of theFokker-Planckequation

(11.21) aSP’ = — a .(b’P’) — — a . a p’
/ 2 ~‘

canbe deducedby

(11.22) P’(x, t) = r(t)”(P 0 A )(x, t)

where A denotes the restriction of A to the (n + 1) first coordinates i.e.

A : (x, t) —~(y, y

0 ~‘)and correspondsto the drift

b~’(x,t)= (b~oA)(x,t)—n(Lôgr)/2+
(11.23)

+ d~(L~gr)— (x+~)2—(~.x)+

It is interesting to remark that the inhomogeneityof tile mediuunexpressed

by thepresenceof thepotential V into theexpressionof themetric~, manifests

iunplicitely only through the unodified drift b’ and not by the emergenceof a

supplementarymultiplicative term into tile Fok-ker-Planck operator, which

corroboratesthe final remarkof Sec. lB.

Let us give now the example of a continuous distribution that appears very

frequently namely the <<normal>> (or Gaussian)solution of the Fokker-Planck
equation.
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Let P be theGaussiandistribution written as

(11.24) P = (2 ~ ~ 2)_n!2 exp (— u2/2)

where

(11.25) U~’(Y~YM)

with

(11.26) = y
0+ v0(y~~

1yfl+l)

i.e. the average~M is the trajectory in JR0 + of a free particle locatedin y
0 at

the datey~’+ with the velocity v0: sucha distributionis solution of theFokker-

-Planckequationfor thedrift

(11.27) b = (~ — 1/2 ~)u +

the variance ~ 2 being the solution of the equation

(11.28) = 1/(4~)

(the dot denoting the derivative with respectto the time coordinateyfl + 1) given

by

(11.29) = [a+ b(y~~— y

7~+1) + c(y~~— y~74.1)2J1/2

with a and c E lR5 andb E JRsuchthat4ac — b2 = 1.

In the (/1 + 1)-dimensional covariant formalism, it turns out to consider the

drift form

— 1/(2~))u + YM~ d~+

(11.30) + ~(l/(4 ~2) + ±/~— ±2)u2 + (1/s — 2~)(u.

—n(~+ I/(2 ~))/~ —~} dv0~‘/2.

Through (11.23) one constructsb’ from which the following drift vector b’

is deduced

(11.31) b’=(~’— l/(2~’))u’+~M

where

(11.32) u’ = ~‘~(x — xM)

with

(11.33) XM = x
0r + v0q —,

~‘ beingnow a solution of thePinney’sequation



94 U. BURDET, M. PERRIN

(11.34) ~‘ —a
2~’ = l/(4 ~‘3)

given by

(11.35) ~‘=(ar2+ brq+eq21112

whereq(r) = r(r)T(r) is a solution of the equationq = a2q such thatq(o) = o;
then r and q are two independentsolutions of the samedifferential equation

sincetheir Wronskianrj — qi~is equalto 1 everywhere.

So, we are now faced with a solution of the equation (11.21) which is still

a Gaussianone

(11.36) F’ = (2ir~’2)~/2exp (— u’2/2)

whose centre x = xM corresponds here to the trajectory of a test principle

submitted to the potential V given by (11.19) and whose variance reflects also

the presenceof V, although a term like VP’ doesnot appearinto Eq. (11.21):
consequentlyall the informations concerningthe externalmediumarecontained

into theexpressionof thedrift b’.

II.C - INVARIANCE ALGEBRA OF THE FOKKER-PLANCK SYSTEM

The symmetrypropertiesof a differential system/ust reflect the infinitesimal

aspectof its structural invarianceproperties. Hence,accordingto the properties
describedin the above Sect. II.B, for the Fokker-Plancksystem we have to

study the automorphismsof the chronoprojectivestructuredescribedin Sect.

II.A.

By definition the automorphisms Aut (L°(V,
7+ ~ wChT) of an extended

chronoprojectivestructure are the elements of Aut (L°(V,7~~ induced by

the diffeornorphisms of V,~+ 11 which map the extended chronoprojective

connection onto itself. Owing to the existence of a Cartan connection, L°(V,7+

is parallelizableand consequentlyAut (L
0(V,~~

11),W,~.ff) is a finite-dimensional

Lie group such that

(11.37) dim Aut (L°(V,74.11),w~1.~)~dim.1~kV,1÷11~= (l/2)n(n + 3)+ 5.

Theseautomorphisnisarein one-to-onecorrespondencewith theautomorphisms

of L’(V.,,~11)which map an admissible connection onto a chronoprojectively

equivalent one.

On V,~÷11they correspondto the elementsof Diff(V,7511) which ensure the
chronoprojective equivalence, namely g’ = pg and ~‘ = a~where p and a are

the functions describedin Sect. II.A. At eachstagesuch mappingswill be called

chronoprojectivetransformations.
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At the infinitesimal level every vector field X on V
0 +11 generates a one-

-parameter (local) group of (local) transformations.This local groupof transfor-

mations prolonged to the bundle of first-order framesP
1(Jf,~~

11)and to the

bundle of second-orderframesP
2(I”

0 a,,) induces a vector field X on P~1’~+

anda vector field X on P
2(F~a,,). Then a vector field X will be calledan infini-

tesimal extended chronoprojectivetransformation (E aut (L°(V~~ w~)) if

the local one-parametergroup generatedby X in a neighbourhoodof eachpoint
of ~ + 11 consists of local extended chronoprojective transformations.

Let us give explicitely the equationswhich lead to the realizationsof the

Lie algebra of automorphisms on the bundle of second-order frames and on

the basis.

i) onP2(V
0~11)

(11.38)

ii) on

(11.39) L~g= eg, ~ =

Now let us showhow the structuralinvariancepropertiesof the Fokker-Planck
system leads to its symmetry algebra. First of all note that the structural
invarianceis obtainedby restricting the chronoprojectiveequivalenceto ~‘ =

(i.e. correspondingto a = 1). This implies to haveto work with the Lie algebra
aut (L°(V,3~11),Wthr) restrictedby the condition a = 0, that is to considerthe
chronoprojectivevector fields which keep invariant the ~ fibration. In the case
where the maximal dimension of the automorphismsgroup is reached(which

correspondsto what is called a chronoprojectivelyflat structure)the symmetry
algebrais knownasthe(extended)SchrOdingeralgebra~ w,7o (o(n)~sl(2, IR)),

otherwiseit is a subalgebraof~ii~which is obtainedonly.

Let us supposedthat

(11.40) L~P keP

andlook for determiningthe constantk. By a direct calculation

(11.41) Lx(A1P) = (k — l)e /2,~.P+ g~(d(2k+ n/2)e,dP) + kPL\1e.

The vanishing of the curvature R implies ~ = 0 since

(11.42) L1R =(n + I)/2,1e—eR.

We are then left with L~(A1P)= (k — 1)�~ + ~ ‘(d(2k + n/2)e,dP) which

is nothingelsethanthe infinitesimalform of Rel (11.13).

In the samemannerwe establish that
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LxV~(~’hP)=�(k I
(11.43)

+ (k + n/2)~‘(de. liP) + n~
1(de, dP)/4

h~usingtile infinitesimal form of (11.11 I. nalilely

(11.44) L~bndd/4.

Finally oneobtains

(11.45) L~(l/2A
1P— V~ ‘(bP))) = — �(n + 2)(l /2 A1P— V1(~1(~p)))/2

by setting k = — n/2 which confirms tile cotransformationproperty of P giVen

by (11.10): it is in fact tile infinitesimal form of (11.14)which can be expressed

by

(11.46) LxFEIF(E)_FE

where[is tile Fokker-Pianck operatordefinedin Sect. lB.

This result can also be expressedas a Lie bracket of differential operators

under tile following form

(11.47) LX — ke, Fl = — eF.

Tilen, if we forget tile geometrical background the invariance algebra of the

Fokker-Planckoperatorcan be directlyfound by soli’ing thesystemofdifferential
equations winch derivesfrom the above relation (11.47): the generali:ation to

iiiamiifolds of the Lie’s trick.

In the particular case of a linear drift sucha calculation hasbeenperformed

[5] for n = 1 and n = 2 and has really led to tile Schrodingeralgebras ~ and
sch2.

Ill - CONCLUDING REMARKS

In the last pastyearsnumerousworks havebeenperformedaboutthe relation

between the Fokker-Planckequation and the Scilrodinger one. This have led,

amongotller things, to what is callednow thestochasticformulation of quantulll

mechanics. So it can be asked whether this correlation remains in tile above

describedgeometricformalism on an extendedspace-time.

The geometricformulation of tile Sclirodinger equationhas beendescribedin

[31 whereit appearsasthe following set of partial differential equations:

(111.1)

(111.2) = (im/h) ~
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showing that the quantum statesare in fact the harmonic functions on

satisfyinga particularpropertywitil respectto the characterof (IR, +).

If one sets as per usual:

(111.3) = exp (iS)

thesystem (111.1 - 2) becomes

(lll.4a) 2 ~ 1(R~dR, dS)+ A
1S = 0

(I1l.4b) R’Lx1R —~~(dS,dS) = 0

(Ill.5a) ~(R) = 0

(lll.5b) ~(S)= I.

Eq. (Ill.4a) which can be written

(111.6) div1(i~kR
2dS))= 0

correspondsin fact to the conservationequation for the Schrodirigercurrent.
Then,by setting

(111.7) = ~‘ dR + dS = (R2d(R2))/2 + dS

and by identifying R2 with F, the current conservationequationtogetherwith
(111.5) corresponds to the Fokker-Planck system (1.15- 16). So thecorrelation

between Schrodinger systemsamid Fokker-Planck ones is maintained in our

formalism, but the stochasticquantization aspectcannot be enteredupon ill

the existing stateof our approach.Let us recallthat theFokker-Planckequation

is an evolution equationfor theprobability distributionof fluctuatingmacroscopic

variables linked to a stochasticdescription of a physical system endowedwith

a microscopic structure whose description is discarded. All the informationsare

then containedinto the differential equation relating the macroscopicvariables

to a chosenstochasticprocess.This aspectremainsto be developedin theabove

described formalism.
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